51 research outputs found

    High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors

    Get PDF
    Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) made of amorphous material has delivered excellent performances, and has had a great impact on a range of research fields. Despite showing the highest system detection efficiency (SDE) ever reported with SNSPDs, amorphous materials typically lead to lower critical currents, which impacts on their jitter performance. Combining a very low jitter and a high SDE remains a challenge. Here, we report on highly efficient superconducting nanowire single-photon detectors based on amorphous MoSi, combining system jitters as low as 26 ps and a SDE of 80% at 1550 nm. We also report detailed observations on the jitter behaviour, which hints at intrinsic limitations and leads to practical implications for SNSPD performance

    Groups whose word problem is a Petri net language

    Get PDF
    There has been considerable interest in exploring the connections between the word problem of a finitely generated group as a formal language and the algebraic structure of the group. However, there are few complete characterizations that tell us precisely which groups have their word problem in a specified class of languages. We investigate which finitely generated groups have their word problem equal to a language accepted by a Petri net and give a complete classification, showing that a group has such a word problem if and only if it is virtually abelian

    Photonic quantum information processing: a review

    Full text link
    Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.Comment: 36 pages, 6 figures, 634 references. Updated version with minor changes and extended bibliograph

    Henri-Auguste Delannoy et la publication des Ĺ“uvres posthumes d'Edouard Lucas

    No full text
    National audienc
    • …
    corecore